
PGSLib: A Library for Portable, Parallel, Unstructured Mesh
Simulations

Robert C. Ferrell t Douglas B. Kothe* John A. Turner ~

Abstract

We have developed a programming model and a library of parallel routines (PGSLib)
to support parallel unstructured mesh simulations. The model and library was
developed for DOE’s ASCI project. Current applications using PGSLib include:
JTpack90 (a parallel linear algebra package), TELLURIDE (metal casting simulation)
and CHAD (high-speed reacting flow simulation). This paper will describe our
implement ation strategy and show some performance results.

1 Introduction

Finite element simulations use irregular data structures with data access patterns not known
until run time. When executing on multiple processors different processors will read and
write the same memory location. On distributed memory systems software over and above
the CPU load and store instructions must be used to read and write the memory of another
processor. On systems with shared memory hardware loads and stores maybe adequate, but
a (possibly system dependent) memory consistency model must be chosen and programmed
correctly.

These tasks burden the programmer with issues not directly germane to developing a
finite element simulation. Fortunately finite element simulations require only a relatively
small amount of general indirect addressing functionality. (TypicaUy indirect addressing
will involve interprocessor communication.) It is possible, and desirable, to isolate the
required functionality and provide it in a library. That is the approach of PGSLib (Parallel
Gather & Scatter Library), described here.

2 Portability and Performance

General interprocessor memory accesses cannot be implemented by accepted, standard,
compilers such as FORTRAN90. On distributed memory machines it is possible to use
HPF (High Performance Fortran) for most operations. However, HPF performance is
generally not adequate and HPF is not ubiquitous. Many shared memory systems have
parallelizing compilers which can provide most -of the required functionality. However, the
semantics for directing parallel operations are not standardized. In addition, performance

. . .

*Supported by the Department of Energy. [DOE) AcceleratecL&ategic (hrqyuting- Initiative (ASW)
Yrogram

tcambridge power Computing Associates, Ltd., 2 Still St., Brookline, MA 02146, fer%U@cPa.z.c~fn
‘Los Alamos National Laboratory, Fluid Dynamics Group T-3, MS B216, Los Alamos, NM 87545,

dbk@lanLgov
sLos Alamos National Laboratory, Transport Methods Group X-TM, MS B226, Los Alamos, NM 87545,

turner@lanLgou

1

2

and optimization vary from system to system. Thus, an implementation which does
execute correctly on different systems may have widely varying performance characteristics.

By isolating the pieces of code which are system dependent it is possible to provide
port able code more easily. Furthermore, good parallel algorithms and system specific
optimizations can more easily be implemented ia just a few places. Since similar
functionality is required of many different applications it makes sense to provide an
application independent library to provide the required functionality.

2.1 Parallel Gather/Scatter Library

PGSLib is a library to support portable, parallel finite element simulations. It includes
functionality which is both 1) required of unstructured mesh simulations, and 2) relevant
to parallel computation. .

At its core, the purpose of PGSLib is to support the gather and scatter operatims
IllUC) (I lLJLl I,C CLC&llCII b ,Y1llL LUCI$I,lULLO . J.llCPG WC, lU1 a /ja.lJ1lcl .

= 1, Nelements
DOJ= 1, NodesPerElement

Ele.Dest (J,l) = Node-Source (Neighbor (J, I))

ENDDO

ENDDO

and for a scatter:

DOI= 1, Nelements
DOJ= 1, NodesPerElement

Node_Dest (Neighbor (J, I)) = Node_Dest (Neighbor (J, I)) +
Ele_Source (J, I)

ENDDO
ENDDO

In these FORTRAN fragments Node-Source and NodeDest are one dimensional arrays.
EleDest and Ele-Source are two dimensional arrays. Neighbor is a two dimensional
integer array of the same shape as EleDest and Ele_Source. Since the arrays are
distributed to all available memory Neighbor may point to any node, so these loops will,
generically, represent memory accesses between processors. According to our philosophy of
isolating code which does global addressing, we replace these loops by library calls. For the
gather, we use

call PGSLib_Gather (Ele.Dest, Node-Source, Neighbor, <. , .>)

and for the scatter

call PGSLib.Scatter. SUM(Node-Dest, Ele_Source,. NeQhbcx: <. ..>)

where <.. . > indicates other variables which we will not describe. The scatter operations
may be SUM, MIN, MAX, OR, AND.

The PGSLib routines are object based, so the same routine name is used for REAL,
REAL*8, INTEGER, LOGICAL data types, and for l-D, 2-D and 3-D arrays.

3

3 Implementation

3.1 Object Based Programming with FORTRAN90

The current interface to PGSLib is ti FORTRAN90, which has proven to be well
suited to scientific programming. PGSLib is provided through the FORTRAN90 module
PGSlib_Module. This provides strong type checking for all subroutine arguments. It also
provides generic routine names so that developers need not be burdened with remembering
type specific and dimension specific routine names. In addition, FORTRAN90 allows
PGSLib routines to determine array sizes for array arguments, further removing a common
source of errors. Finally, FORTRAN90 provides data hiding mechanisms.

3.2 Communication Primitives

The implementation uses a “send-to-queue” construct. This provides a useful building
block for the gather and scatter routines as well as other routines provided by PGSLib,
such as the parallel ranking routine, PGSLib-GRADE.UP.

In a typical operation each processor moves data into a (local) buffer, then data from
the buffers are sent to their destinations, and finally the newly arrived data is transferred to
its ultimate destination (through local operations). The source buffer for a gather operation
is the destination buffer for a scatter operation, and vice versa. For either a gather or a

scatter only a single pass through the finite element mesh is required.
The communication buffers may be considered ghost cells. The buffer transfer

mechanism is exposed so that developers wishing to implement their own ghost cells can
take advantage of PGSLib.

3.3 Optimizations

PGSLib has been optimized for distributed ,rnernorysystems. For the gathers and scatters
PGSLib uses an inspector/executor[l] model. Before using any particular global index a
call to PGSLib.GS-Setup must be made. This routine:

1. Translates a global index into (processor, local index) pairs.

2. Aggregates messages so that any pair of processors exchange at most one message.
This reduces the impact of message passing latency.

3. Schedules the communication, determining w~lch
and which it wi.Ureceive.

This state is stored in a trace. Only a single trace is
The same trace is used for both gather and scatter, and

3.4 Data Locality

data items a processor will send

required for any particular index.
for all data types.

In any multiprocessor system it is imperative (for performance) that most memory accesses
do not cause contention. On a distributed memory and cache based systems system it is
important that most accesses are local. Typically, a finite element mesh is partitioned into
submeshes. A submesh is assigned to the memory closest to the processor which daes (most
o~j the computing on it. Usually the partitioning is done so as to minimize the boundary
between submeshes.

PGSLib exploits whatever partitioning has been done. All routines work correctly on
unpartitioned or randomly distributed meshes. However, if a mesh has been partitioned
PGSLib exploits that.

4

3.5 Memory Usage

The philosophy of PGSLib is that, to the extent possible, memory management should be
done by the host program. To that end, PGSLib accepts standard FORTRAN90 arrays as
arguments. PGSLib specific arrays are not required. The buffers that PGSLib requires may
be allocated by the user or by PGSLib, depending on parameters. The size of the buffers
is proportional to the size of the boundary (surface of the submeshes). Consequently, for
a high quality partitioning of a mesh the buffers are small (since one measure of quality
includes minimizinq the size of the boundary).

3.6 Transport Layer

PGSLib uses MPI (Message Passing Interface) to transport data between processors. The
required MPI functionality has been deliberately minimized. Future computers mays upply
other communication mechanisms (e.g, distributed shared memory hardware). PGSLib is
designed to adapt to other communication mechanisms readily.

3.7 Serial Simulator

Parallel application development is challenging both because the algorithms may be new
and because development tools are less mature than those available for serial program
development. To aid developers PGSLib provides a serial simulator. The simulator has
the same interface as the parallel library. However, it runs on only on a single processor.
Applications linked with the serial simulator can be debugged using any debugger used for
serial programs.

The behavior of the serial simulator is defined as follows. PGSLib (parallel version) has
defined outputs for any number of processors. The serial simulator gives the same results as
parallel PGSLib on one processor. (This is true only for programs calling PGSLib correctly.
No such guarantee is available for programs which are not using PGSLib correctly.)

The serial simulator makes it easier to develop new physics modules, for instance. Also,
it allows developers to gradually incorporate the use of PGSLib. Once the transition is
complete it is only necessary to re-link, not re-compile, the program to switch from the
serial simulator to parallel PGSLib

4 Other Functionality in PGSLib

4.1 Reductions

The gather and scatter operaticms are needed for computing differential operators as well
as matrix-vector multiplies. Many finite element simulations use iterative solvers as well
(JTPack90)[2] Those require global reduction operations such as dot product. We’ve
included a variety of reductions in PGSLib, with names and functionalisty motivated by
F’0RTRAN90. The distinction is that these operate on distributed arrays. The supported

PGSLibDOT_PRODUCT
reduction operations are: PGSLib_MINVAL PGSLib_MAXVAL

PGSLibllAXLOC PGSLib_MINLOG

4.2 Support for Mesh Distribution and Re-Ordering

Many mesh partitioners take node/node or element/element connectivity as input. Many
mesh generation packages supply only element/node connectivity. The other connectivity
must be constructed. Typical mesh partitioners return a partition number for each node

4 5

TABLE 1

Implicit heat flow on 46, 386-cell chalice mesh. a

CPU Time
Processors (Ps/ceU/cycle) Speed Up Efficiency

1 5013 1.0 1.00
2 2169 2.3 1.15
4 1237 4.1 1.01
8 721 7.0 0.87

a300 IIHzDigital AlphaServer 8400

or each element of the mesh. A permutation vector must be determined and applied to
the mesh so that it is organized into partitions. These operations, and other similar graph
operations, often are done serially because they are done only at the start of a job, and
hence execution time is not critical. However, a large mesh may be too large for a single
serial process. PGSLib provides routines that can perform the necessary operations in
parallel. Many of the routines were motivated by HPFllbrary routines. The provided
routines include:

1. PGSLib_GRADE-UP Performs parallel ranking of a distributed array. Also accepts a

segment (in the HPF sense) and performs segmented parallel ranking.

2. PGSLib_SUMJREFIX, PGSLib-SUM-SUFFIX,PGSlib_PARITYIREFIX and
PGSLib_PARITY_SUFFIXPerform scan operations on distributed arrays.

3. PGSLib-CSHIFT, PGSLib_EOSHIFTGlobal versions of the FORTRAN90 routines (for
a restricted class of arrays).

4. PGSLib_PERMUTEA useful routine which permutes a distributed vector according to
a distributed permutation vector.

5 Applications Using PGSLib

Telluride[3] is designed to simulate metal casting. The core physics includes the (low-speed)
flow of molten material and the subsequent solidification. Telluride is described elsewhere
in these proceedings. CHAD is designed for simulation of combustion engines. The core
physics includes high speed reacting flow on a moving mesh. In addition to these, other
applications in the ASCI program are exploring the use of or planning to use PGSLlb.

6 Performance Results

We present three tests from the Telluride program. In these tests heat flow is solved using
an implicit solver. JTPack provides the conjugate gradient routine. PGSLib provides the
indirect addressing required for matrix-vector multiply as well as that required for difkmmce
operators in Telluride.

In each of the tables Speed Up is defined as T1/TNP where T. is the time on n processors
and NP “is the number of processors. Eficiency is 5’peed Up/NP.

References

I—

.?

TABLE 2
Implicit heat jiow on 16 x 16 x 192 mesh using a shared memory multiprocessor. a

CPU Time
Processors (Ps/cell/cycle) Speed Up Efficiency

1 583 1.0 1.00
2 258 2.3 1.13
3 162 3.6 1.20
4 129 4.5 1.13
6 93 6.3 1.04
8 69 8.4 1.06

a300 MHz Digital Alphaservor 8400

TABLE 3
Implicit heat flow on 16 x 16 x 320 mesh using a distm”buted memory multiprocessor. a

CPU Time
Processors (ps/cell/cycle) Speed Up Efficiency

1 1113 1.0 1.00
2 635 1.8 0.88
10 124 9.0 0.90
20 65 17. 0.86

a67 tlfiZ 18S SP2

	1:

